Reduced Cell Size Metamaterial Based Wideband Infrared Absorber

نویسنده

  • Hamzeh M. Jaradat
چکیده

A novel design of metamaterial (MTM) based absorber with reduced cell size is proposed in this paper. The absorber is designed to operate in the mid infrared (IR) regime using gold nano-pillar inclusions embedded in a dielectric spacer. The absorption band can be controlled by adjusting the nano-pillar’s properties. Numerical simulations have been conducted to investigate the effect of these inclusions on the absorber performance. Moreover, a wideband absorber is designed by combining four different sized resonant elements within the unit cell. The absorber shows enhanced characteristics such as large bandwidth, small cell size to wavelength ratio and high absorption level for wide range of incident angles for different wave polarizations. The achieved bandwidth is around 60% with normalized absorption percentage of 80% over the band 5.2-9.8μm, and cell size ratio of 0.34λ. Keywords— Metamaterials, Multi-sized absorber, Nano-pillar inclusions, Subwavelength structures, Wideband IR absorber.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Planar, Layered Ultra-wideband Metamaterial Absorber for Microwave Frequencies

In this paper, an ultra-wideband metamaterial absorber is designed and simulated. The proposed absorber is planar and low profile. It is made of a copper sheet coated with two dielectric layers. Each unit cell of the metamaterial structure is composed of multiple metallic split rings, which are patterned on the top and middle boundaries of the dielectrics. The designed absorber utilizes differe...

متن کامل

Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption

We design a soft infrared metamaterial absorber based on gold nanorods dispersed in liquid crystal (LC) placed on a gold film and theoretically investigate its total absorption character. Because the nanorods align with the LC molecule, the gold nanorods/LC hybrid exhibits different permittivity as a function of tilt angle of LC. At a certain tilt angle, the absorber shows an omnidirectional to...

متن کامل

Dual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies

In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...

متن کامل

X-Band Operations Metamaterial Absorber with Extended Circular Ring Topology for Size Reduction

A metamaterial electromagnetic wave absorber consisting of a big circular ring patch with four smaller suppression circular rings is presented in this report. The metamaterial electromagnetic wave absorber introduces the concept of size reduction by suppressing the resonance frequency. An FR4 substrate was used and the incidental wave angles were varied from 0 0 to 60 0 . Simulations results sh...

متن کامل

Infrared perfect absorber based on nanowire metamaterial cavities.

An infrared perfect absorber based on a gold nanowire metamaterial cavities array on a gold ground plane is designed. The metamaterial made of gold nanowires embedded in an alumina host exhibits an effective permittivity with strong anisotropy, which supports cavity resonant modes of both electric dipole and magnetic dipole. The impedance of the cavity modes matches the incident plane wave in f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017